Programming Logic and Design, Third Edition Comprehensive
 4-7

Chapter 4
Writing and Designing a Complete Program
At a Glance
Instructor’s Notes
· Chapter Overview

· Chapter Objectives

· Technical Notes

· Lecture Notes

· Quick Quizzes

· Discussion Questions

· Additional Activities

Instructor’s Notes
Chapter Overview

In this chapter, students will plan the mainline logic for a complete program and describe the typical housekeeping tasks. They will also learn the tasks typically performed in the main loop of a program and the tasks performed in the end-of-job module. Then, students will learn the need for good program design and appreciate the advantages of storing program components in separate files. Also, they will select superior variable and module names and design clear module statements. Finally, students will learn the need for maintaining good programming habits.

Chapter Objectives
After studying Chapter 4, students should be able to:

· Plan the mainline logic for a complete program

· Describe typical housekeeping tasks

· Describe tasks typically performed in the main loop of a program

· Describe tasks performed in the end-of-job module

· Understand the need for good program design

· Appreciate the advantages of storing program components in separate files

· Select superior variable and module names

· Design clear module statements

· Understand the need for maintaining good programming habits

Technical Notes
In order to best present the material in this chapter to students, I recommend hands-on activities. Create one activity that can be broken off into sections and assign a section to each group. Then have them come together and put a final product together. By splitting your class into groups, each student can learn from the experience of their classmates. Ideally, each student would have individual access to a PC during lectures, so they may utilize different programming techniques. However, it has been my experience that when teaching any sort of subject matter, it is a good idea to demonstrate the concepts and then ask students to work individually in different lab settings.

This chapter should not be completed in one class session. I would recommend splitting it into at least two class sessions if possible. The amount of subject matter to be covered, can be covered in anywhere between a 2-4 hour period. Plus any at-home exercises you wish to assign. . It is recommended that you have couple of programming languages at your disposal for comparison purposes. Also, Internet connectivity would be an advantage.

Lecture Notes
Understanding the Mainline Logical Flow through a Program
It’s wise to try to understand the big picture first. You can write a program that reads records from an input file and produces a printed report as a procedural program(that is, a program in which one procedure follows another from the beginning until the end. The overall logic, or mainline logic, of almost every procedural computer program can follow a general structure that consists of three distinct parts.

	Quick Reference

	Discuss the three distinct parts of mainline logic for almost any procedural program as listed on page 117 of the text.

Most programmers prefer to break their programs into at least three parts. The main program can call the three major modules, as shown in the flowchart and pseudocode in Figure 4-6 on page 117 of the text.

Housekeeping Tasks

Housekeeping tasks include all the steps that must take place at the beginning of a program. Very often, this includes four major tasks:

· You declare variables.

· You open files.

· You perform any one-time-only tasks that should occur at the beginning of the program, such as printing headings at the beginning of a report.

· You read the first input record.

Declaring Variables

When you declare variables, you assign reasonable names to memory locations, so you can store and retrieve data there. Declaring a variable involves selecting a name and a type.

	Quick Reference

	Discuss the example given on page 118 of the text of an inventory report program, and examine Figure 4-8 on page 119 of the text.

You can provide any names you choose for your variables. The variable names just represent memory positions, and are internal to your program. In most programming languages, you can give a group of associated variables a group name. This allows you to handle several associated variables using a single instruction. The way you assign a group name to several variables differs in each programming language. This book follows the convention of underlining any group name and indenting the group members beneath, as shown in Figure 4-10 on page 121 of the text.

In addition to declaring variables, sometimes you want to provide a variable with an initial value. Providing a variable with a value when you create it is known as initializing, or defining the variable. In many programming languages, if you do not provide an initial value when declaring a variable, then the value is unknown or garbage. Some programming languages do provide you with an automatic starting value; for example in Java, BASIC, or RPG, all numeric variables automatically begin with the value zero. However, in C++, C#, Pascal, and COBOL, variables do not receive any initial value unless you provide one.

Opening Files
If a program will use input files, you must tell the computer where the input is coming from(for example, a specific disk drive, CD, or tape drive. This process is known as opening a file. Because a disk can have many files stored on it, the program also needs to know the name of the file being opened. In many languages, if no input file is opened, input is accepted from a default or standard input device, most often the keyboard.

A One-Time-Only Task(Printing Headings
A common housekeeping task involves printing headings at the top of a report. In the inventory report example, three lines of headings appear at the beginning of the report. In this example, printing the heading lines is straightforward:

print mainHeading

print columnHead1

print columnHead2

Reading the First Input Record

If the input file has no records, when you read the first record the computer recognizes the end-of-file condition and proceeds to the finishUp() module, never executing mainLoop(). More commonly, an input file does have records, and after the first read the computer determines that the eof condition is false, and the logic proceeds to the mainLoop().

Immediately after reading from a file, the next step always should determine whether eof was encountered. The flowchart in the lower part of Figure 4-13 on page 126 shows correct record-reading logic. Figure 4-14 on page 127 of the text shows a completed housekeeping() routine for the inventory program in both flowchart and pseudocode versions.

Quick Quiz

1. The __________ of almost every procedural computer program can follow a general structure that consists of three distinct parts. ANSWER: overall logic or mainline logic

2. The __________ just represent memory positions, and are internal to your program. ANSWER: variable names

3. In many programming languages, if you do not provide an initial value when declaring a variable, then the value is __________. ANSWER: garbage or unknown

4. If no file is opened, a default or __________, usually the monitor, is used. ANSWER: standard output device

5. Immediately after reading from a file, the next step always should determine whether __________ was encountered. ANSWER: eof or end-of-file

Writing the Main Loop

The main loop of a program, controlled by the eof decision, is the program’s “workhorse.” Each data record will pass through the main loop, where calculations are performed with the data and the results printed.

	Quick Reference

	Discuss the example of the inventory report program, the mainLoop() module must include the three steps listed on page 129 of the text.

Eventually, during an execution of the mainLoop(), the program will read a new record and encounter the end of the file. When you ask the eof question in the main line of the program, the answer will be yes, and the program will not enter the mainLoop()again. Instead, the program logic will enter the finishUp()routine.

Performing End-Of-Job Tasks
Within any program, the end-of-job routine holds the steps you must take at the end of the program, after all input records are processed. Very often, end-of-job modules must close any open files. The end-of-job module for the inventory report program is very simple.

	Quick Reference

	Discuss the end-of-job routine for the inventory report program as illustrated in Figures 4-19 and 4-20 on pages 132 and 133 of the text.

Understanding the Need for Good Program Design
As your programs become larger and more complicated, the need for good planning and design increases. Ideally, each program module you design needs to work well as a stand-alone module and as an element of larger systems.

Storing Program Components in Separate Files
Most modern programming languages allow you to store program components in separate files. If you write a module and store it in the same file as the program that uses it, your program files become large and hard to work with, whether you are trying to read them on a screen or on multiple printed pages. In addition, when you define a useful module, you might want to use it in many programs.

	Quick Reference

	Discuss the example on page 135 and 136 of the text and examine Figures 4-21 and 4-22, which correspond with it.

Storing components in separate files can provide an advantage beyond ease of reuse. When you let others use your programs or modules, you often provide them with only the compiled version of your code, not the source code, which is composed of readable statements. Storing your program statements in a separate, non-readable, compiled file is an example of implementation hiding, or hiding the details of how the program or module works. Other programmers can use your code, but cannot see the statements you used to create it.

Selecting Variable and Module Names
An often-overlooked element in program design is the selection of good data and module names (sometimes generically called identifiers). Every programming language has specific rules for the construction of names(some languages limit the number of characters, some allow dashes, and so on(but there are other general guidelines.

	Quick Reference

	Discuss the other general guidelines that are listed on pages 137 and 138 of the text.

Designing Clear Module Statements
In addition to selecting good identifiers, you can use the following tactics to contribute to the clarity of the statements within your program modules.

· Avoid confusing line breaks.

· Use temporary variables to clarify long statements

· Use constants where appropriate

Avoiding Confusing Line Breaks
Some older programming languages require that program statements be placed in specific columns. Most modern programming languages are free form. Figure 4-23 on page 138 of the text shows an example of code (part of the housekeeping module from Figure 4-14 on page 127) that does not provide enough line breaks for clarity. The code in Figure 4-24 on page 139 of the text looks clearer to you; it will also look clearer to most other programmers.

Using Temporary Variables to Clarify Long Statements
When you need several mathematical operations to determine a result, consider using a series of temporary variables to hold intermediate results. For example, Figure 4-25 on page 139 of the text shows two ways to calculate a value for a real estate salespersonCommission variable.

Using Constants Where Appropriate
Whenever possible, use named values in your programs.

	Quick Reference

	Discuss the benefits of using constants as illustrated on page 139 of the text.

Maintaining Good Programming Habits

Every program you write will be better if you plan before you code. If you maintain the habits of first drawing flowcharts or writing pseudocode as you have learned here, your future programming projects will go more smoothly. If you walk through your program logic on paper (called desk-checking) before starting to type statements in C++, COBOL, Visual Basic, or Java, your programs will run correctly sooner.

Quick Quiz

1. Using a separate __________ or __________ such as profit to temporarily hold a calculation is never wrong, and often it’s the clearest course of action. ANSWER: work variable or work field

2. Storing your program statements in a separate, non-readable, compiled file is an example of __________. ANSWER: implementation hiding

3. Programmers refer to program that contain meaningful names as __________. ANSWER: self-documenting user interface

4. When you need several mathematical operations to determine a result, consider using a series of __________ variables to hold intermediate results. ANSWER: temporary

5. If you walk through your program logic on paper before starting to type statements is known as __________. ANSWER: desk-checking

Discussion Questions
1. Discuss the variety of “house keeping” tasked used in program development.

2. Discuss the usefulness of temporary variables.

Additional Activities
1. Provide students with some programming scenarios and have them create the mainline for each scenario.

2. Provide students with programming code that appears confusing and have them create temporary variables.

Solutions to Exercises can be found within the Instructor’s Resource Kit (CD-ROM) that accompanies this text or at the following link:

http://www.course.com
7

